
N94- 35062

Intelligent Resources for Satellite Ground Control Operations

Patricia M. Jones

University of Illinois at Urbana-Champaign

Department of Mechanical and Industrial Engineering
1206 W. Green St., Urbana IL 61801

217-333-3938 ('Voice)
217-244-6534 (Fax)

pmj @ux l.cso.uiuc.edu (email)

Keywords: knowledge-based spacecraft command and control; intelligent user interfaces

ABSTRACT

This paper describes a cooperative approach to the design of intelligent automation and

describes the Mission Operations Cooperative Assistant for NASA Goddard flight
operations. The cooperative problem solving approach is being explored currently in the
context of providing support for human operator teams and also in the definition of future
advanced automation in ground control systems.

INTRODUCTION

The increasing sophistication and complexity of satellite ground control operations requires
new approaches to the design of ground control systems. One approach to providing
intelligent assistance to operators in real-time control tasks is via an intelligent cooperative
problem solving system. Unlike the traditional expert system that queries the user, detects
problems, and offers advice, the cooperative problem solving approach advocates
providing a variety of flexible intelligent resources to the human operator (Woods, 1986;
Jones, 1991; Jones and Mitchell, 1993).

A theory of human-computer cooperative problem solving proposed by Jones
(Jones, 1991; Jones and Mitchell, 1993) provides high-level design guidelines for the
development of intelligent cooperative automation. These principles advocate human
authority, mutual intelligibility, openness and honesty, multiple perspectives, and the
management of trouble. In short, the human operator(s) should retain locus of control in
interaction and decision making, and the intelligent automation should be obvious,
inspectable, unambiguous, provide multiple views of the situation, and provide support
for varying levels of help and expertise.

The rest of this paper will focus on the modeling, representation, and architecture of
an existing prototype cooperative problem solver system and current research on defining
new requirements and architectures for intelligent cooperative support.

THE MISSION OPERATIONS
COOPERATIVE ASSISTANT

A prototype cooperative problem solver system, the Georgia Tech Mission Operations
Cooperative Assistant (GT-MOCA, hereafter referred to as MOCA), was developed for the
context of NASA Goddard real-time flight operations and was experimentally evaluated
with ERBS and COBE flight analysts in the context of a high-fidelity real-time interactive
simulation of MOCA provides an interactive normative operator model, messages, and
interactive graphics to be utilized in conjunction with the operator's existing work
environment. In particular, the interactive normative model provides a visualization of the

content and structure of current expected activities and allows operators to query this
representation and also delegate activities to MOCA.

__ P__I_E _kltl_lK NOT I_ILIHFL_ 233

MOCA is based on the operator function model (OFM) (Mitchell, 1987) and the

OFMspert architecture (Rubin, Jones, and Mitchell, 1988). The operator function model is
a heterarchic-hierarchic network model that specifies activities at various levels of
abstraction and the actions needed to successfully accomplish those activities. Activities
and actions are nodes in the OFM network, and arcs represent system triggering events or

the successful completion of activity. The OFM is implemented as a blackboard
architecture that forms the basis of intent inferencing (Rubin, Jones, and Mitchell, 1988).
Here, the basic OFMspert components as implemented in MOCA and the MOCA-specific

Cooperative Problem Solver component are described.
Figure 1 illustrates the overall software architecture. The Controlled System

Interface class parses information from the controlled system (in this case, a high-fidelity
interactive simulation) and sends appropriate messages to other OFMspert components.

(OFMspert) _ _I

Interfacei__ ControlledSystem

Inter_ce

Enhanced Normative
Modd

[ActivityTrees

_e [Operator Actions

_ve Problem
Solving Module

Strategiesfor
managing advice,

repair

Generate adviceobjects

Generate checklists

1
Environment

Figure 1. The MOCA architecture.

The State Space class represents the current state of the controlled system. Thus, many of
the classes that are fully implemented in the simulation itself (e.g., classes to represent

spacecraft components) are partially replicated here to provide a modular, efficient
representation of the current system state. The Control Environment class represents the
simulation user interface as a collection of DisplayPanel objects, each of which has a name,

234

acharacterstringdenotingwhat informationthatpanelcontains,andan integerdenoting
whetherornot thepanelis currentlydisplayed.

The EnhancedNormativeModelclassencapsulatesthe knowledgeof theoperator
functionmodelfor aparticulardomain(here,real-timeflight operations),wherethemodel
is representedasactivity trees(organizedfunctions,subfunctions,andtasks) andactions.
In general,the EnhancedNormative Model containstablesof all thesestructuresand
memberfunctionsthatareusedto instanciateandscheduletheremovalof activity treesand
actionson theblackboard. Most of this informationis file-driven;at thebeginningof the
program,theEnhancedNormative Model reads in files that give the structure of the activity
trees (i.e., function-subfunction-task relationships), their supporting actions, and the
structures of all the nodes in the operator function model. The different information and

formats in each file correspond to four classes to represent that information. The class
ActivityTreeStruct represents the model-driven information (i.e., function-subfunction-task

activity trees) of the operator function model. The ActivityTreeStruct class also
encapsulates the alert message associated with each tree. The class ModelTreeStruct is a
subclass of ActivityTreeStruct that also includes the actions associated with each task. The

class ConnectionStruct encapsulates intent inferencing information; i.e., the names of

actions are associated with the names of the tasks which those actions support. Also, the
ConnectionStruct class contains members to represent the "what is" and "how to"

information associated with each action. Finally, the NodeStruct class is used to represent
ActivityNodes. This class represents a node's level, name, type, purpose, and enabling
event as character arrays. This information is used by Enhanced Normative Model
methods for "instanciating" a particular tree.

The Blackboard class of MOCA is essentially the same as previous implementations
of the OFMspert blackboard (Rubin, Jones, and Mitchell, 1988; Chronister, 1990). The
blackboard data structure has four levels: functions, subfunctions, tasks, and actions. The

control structures consist of three lists of events: the clock events list, the problems list,
and the events list. The clock events list is a time-sorted list of events to be done at

prespecified times. The problems list is a list of unconnected actions. The events list is a
list of current events to be processed. The knowledge sources are member functions for
processing events to maintain and update the blackboard. Some extensions were made to
the representation of blackboard nodes. The abstract superclass ActivityNode now also
contains a member denoting the names of the supernodes that this node can connect to,
because subfunctions and tasks as well as actions can be posted and connected to nodes at a
higher level. ActivityNode also contains a new member that describes the enabling event
for its posting (e.g., the Monitor function's enabling event is that telemetry data have begun
to arrive). The subclasses of ActivityNode are FunctionNode, SubfunctionNode,
Task.Node, and ActionNode. The ActionNode class includes "what is" and "how to"
information.

Part of the structure of the Cooperative Problem Solver class is given in Table 1. It
represents message-sending paths with other OFMspert components, the history and
current focus of allocated activities and communicative acts, the current checklist of actions
to be displayed or performed, and an organized collection of declarative information used in
the performance of allocated bookkeeping activities. The Cooperative Problem Solver class
has a number of member functions for the creation and maintenance of these structures.

Besides the behaviors of creating, adding, deleting, and finding items on the various lists,
the Cooperative Problem Solver has a number of key functions that are summarized in
Table 2.

As noted in these tables, significant classes associated with the Cooperative Problem
Solver represent communicative knowledge in the form of communication knowledge
objects (in a similar spirit to context spaces (Reichman, 1985). Class CommunicationKO
represents the communicative act's name, the time it was initiated, the time it was ended, its

initiating and terminating conditions (as described in the main thesis text), its history of
statics changes, purpose, priority, and content. Class CommunicationKO has three

235

subclasses that represent specialized types of communicative acts. Class
AdviceReminderKO hasan additionalmemberthat representsthe feedbackstructure
generatedby blackboardassessments.ClassLimitViolationKO hasadditionalmembersto
representthestatusandcurrentvalueof theassociatedspacecraftparameter(whosenameis

Table 1. Partialstructureof ClassCooperativeProblemSolver

Member

giveAdvice

allocatedFunctions
allocatedSubfunctions
aUocatedTasks

currentConversational-
Context

currentActivity

currentAdvice

currentChecklist

Description

Boolean variable

Denotes whether or not to present advice/reminder

messages to the user. This is the variable that is set
when the user clicks on the "Give Advice" checkbox
on the MOCA main menu.

Pointers to an AllocatedActivity object

These members of class CPS denote the heads of linked

lists of AliocatedActivity objects that correspond to the
functions, subfunctions, and tasks allocated to MOCA.

Pointer to a CommunicationKO object

Denotes the communicative act which is the current focus

of processing by MOCA.

Pointer to an ActivityKO object

Denotes the activity which is the current focus of

processing by MOCA. _.

Pointer to an AdviceReminderKO object

Denotes the advice which is the current focus of

processing by MOCA.

Array of I0 character pointers (character strings)

Denotes the current dynamically-generated checklist to
be displayed to the user and/or to be performed by
MOCA.

236

Table2. Significantmemberfunctionsof classCooperativeProblemSolver

Member function
propagateResponsibility

makeRespCommAct

manageCornmunication

generate_,dvice
generateAlert
generateConfirmation
generateExplanation
generateDetails
generateAcknowledgment

generateLimitViolation-
Message
generateDataDropout-
Message
generateLimitSummary-
Message

generateDynamicChecklist

generateSpecialChecklist

Description
Whentheuserallocatesanactivitynodeto MOCA,
its responsibilityissetto "MOCA". Thiseffect
propagatesdownwardsuchthattheresponsibilityof
subnodesis alsosetto "MOCA". Propagationalso
occursupwardsuchthatsupemodes'responsibilityis
either"shared"(if othersubnodesof thesupemodeare
still allocatedto thehuman)or "MOCA" (if all other
subnodeshavealsobeenallocatedto MOCA).
Givenanactivitynodeallocatedto MOCA, this
functionreturnsanassociatedCommunicationKOthat
representsthecommunicativeactof "echoing"thatact
of delegation.
This function is the heart of MOCA's managementof
communicativeacts. Every CommunicationKOthat is
createdandaddedto the appropriatelist is passedasan
argument to this function. Currently,
manageCommunicationsetstheCommunicationKOasthe
currentConversationalContext,anddecides,basedon the
purposeof this act,which function to call to generatea
messageto theuserasshownin thenextbox.
ThefunctionscalledfrommanageCommunicationif the
currentConversationalContext'spurposeis, respectively,
to provide ADVICE on missing, out of order, or late
actions; ALERT the user that certain functions,
subfunctions, and/or tasks were posted on the blackboard;
CONFIRM that MOCA has performed an action in
response to an activity delegation; EXPLAIN how to do

an action on the dynamic checklist display; ELABORATE
on "what is" an action on the dynamic checklist display;
acknowledge that MOCA received the request to perform
an activity (ACTIVITY_MANAGEMENT); or provide
domain-specific alert messages.
This function places the currentConversationalContext's

content in the appropriate textlist display...

Given an activity node for which the user requests
delegation or a checklist, this function queries the
EnhancedNormativeModel to find the actions that

constitute the successful fulfillment of that activity.
Given an activity node for which the user requests
delegation or a checklist, this function examines

context-specific information to generate the appropriate
checklist of actions. For example, if the user requests
a checklist for the TRPBK subfunction, this function

examines the current support characteristics to decide

if the appropriate control actions involve Tape Recorder I
or Tape Recorder 2 (i.e., the list may be TR 1STBY and
TRIPBK, or TR2STBY and TR2PBK).

237

assignedasthe nameof theLimitViolationKO). ClassDataDropoutKOhas the same
structureof aCommunicationKO,but is treateddifferently; its namerepresentsthetypeof
dataloss (e.g.,"fwd link") andits startandendtimesrepresentthe startandendtimesof
thedataloss.

INTELLIGENT SUPPORT FOR ACTIVITY MANAGEMENT

MOCA provides the basis for further architectures to support human-computer cooperative
problem solving. MOCA's limitations,however, included its lack of integration between the
resources for cooperative problem solving and its lack of support for planning (Jones and
Mitchell, 1993). Currently we are building the Intelligent Support for Activity Management

(ISAM) architecture which addresses these issues (Jones, 1993a, 1993b, Jones and Goyle,
1993; Jones, Patterson, and Goyle, 1993). In particular, activities are represented more

completely by Activity Objects that explicate knowlege of priorities, resources, constraints,
and temporal relationships between activities. Furthermore, the context of activity --

including the current state of the user's "information space" (e.g., displays), current state
of the controlled system, and evolving status of artifacts that both guide activity and are the
result of activity -- is explicitly captured and represented by objects as well. This
architecture is currently under development; a high-level conceptual overview is provided in

Figure 2 below.

Intelligent Support for
Activity Management (ISAM)

User Interface: Interactive visualization of activities,
their relationships, constraints, resources

I nterface
J

context- 1 new events update

senslive l
resoumesj I

Current Context Representation

Blackboard Model of ActivityI

Activity Context

Information Space

State Space of System

Evolving Artifacts

instantiates

Object Knowledge Base

Activity Objects

Activity Context KB

Information Objects

System Objects

Artifact Objects

Figure 2. ISAM Architecture.

238

ACKNOWLEDGMENTS

This research is supported by grants from NSF (IRI92-10918) and NASA Goddard Space
Flight Center (NAG5-244).

REFERENCES

Chronister, J. A. (1990). MS thesis, School of ISYE, Georgia Institute of Technology.
Jones, P. M. (1993a) Cooperative support for distributed supervisory control: Issues,

requirements, and an example from mission operations. Proceedings of the ACM
Intenational Workshop on Intelligent User Interfaces, 239-242, Orlando, FL
January 1993.

Jones, P. M. (1993b). Cooperative work in mission operations: Analysis and implications
for computer support. Manuscript in preparation.

Jones, P. M. (1991). Human-computer cooperative problem solving in supervisory
control. PhD dissertation, School of ISYE, Georgia Institute of Technology.

Jones, P. M. and Goyle, V. (1993). A field study of TPOCC mission operations:
Knowledge requirements and cooperative work. EPRL-93-05, Engineering
Psychology Research Laboratory, Department of Mechanical and Industrial
Engineering, University of Illinois at Urbana-Champaign.

Jones, P. M. and Mitchell, C. M. (1993). Human-computer cooperative problem solving:
Theory, design, and evaluation of an intelligent operator's associate. Manuscript
accepted for publication to IEEE Transactions on Systems, Man, and Cybernetics.

Jones, P. M. and Mitchell, C. M. (1991a). A mechanism for knowledge-based reminding
and advice-giving in the supervisory control of complex dynamic systems. Proc. of
the 1991 IEEE International Conference on Systems, Man, and Cybernetics.

Jones, P. M. and Mitchell, C. M. (1991b). Cooperative interaction in the supervisory
control of complex dynamic systems. Proc. of the 1991 IEEE International
Conference on Systems, Man, and Cybernetics.

Jones, P. M., Mitchell, C. M., and Rubin, K. S. (1988). Intent inferencing with a model-
based operator's associate. Proceedings of the Sixth Symposium on
Empirical Foundations of Information and Software Sciences (249-258).
Atlanta,GA.

Jones, P. M., Mitchell, C. M., and Rubin, K. S. (1990). Validation of intent inferencing
by a model-based operator's associate, bzternational Journal of Man-Machhw
Studies, 33, 177-202.

Jones, P. M., Patterson, E. S. and Goyle, V. (1993). Modeling and intelligent aiding
for cooperative work in mission operations. Proc. of the 1993 IEEE International
Conference on Systems, Man, and Cybernetics, Le Touquet, France.

Mitchell, C. M. (1987). GT-MSOCC: A research domain for modeling human-computer
interaction and aiding decision making in supervisory control systems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-17, 553-570.

Reichman, R. (1985). GetthTg computers to talk like you and me.
Cambridge, MA: MIT Press.

Rubin, K. S., Jones, P. M. and Mitchell, C. M. (1988). OFMspert: Inference of
operator intentions in supervisory control using a blackboard architecture. IEEE
Transactions on Systenzs, Man, and Cybernetics, 18, 618-637.

Woods, D. D. (1986a). Cognitive technologies: The design of joint human-machine
cognitive systems. The AI Magazine, 6, 86-92.

239

